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Reynolds-stress measurements in a turbulent 
trailing vortex 

By W. R. C .  PHILLIPSt AND J. A. H. GRAHAM1 
Department of Mechanical Engineering, McGill University, Quebec, Canada 

(Received 26 October 1983 and in revised form 12 April 1984) 

Measurements of a turbulent trailing vortex in zero pressure gradient arc described. 
These include mean velocities and all the components of the Reynolds-stress tensor. 
The measurements were made using linearized hot wires a t  stations 45, 78 and 109 
chordlengths downstream of the wing. Axisymmetric jets or wakes were added 
coaxially to the vortex while the total circulation was held constant, and their effect 
studied. It was found, as Poppleton and Mason & Marchman have reported, that  
increasing the flow force hastens the radial dispersion of vorticity; this is seen to be 
concurrent with higher turbulence intensities and Reynolds shear stresses. With the 
flux of excess axial momentum effectively zero, thereby approximating a turbulent 
line vortex, no discernible downstream change was observed in the velocity field and 
very little in the turbulence field. 

A balance of terms in the mean-momentum equations is presented and discussed. 
It is seen that, in spite of the fact that the radial velocity is numerically much smaller 
than the axial velocity, terms that contain i t ,  both in the axial- and tangential- 
momentum equations, cannot be ignored, unless the magnitude of the flow force 
(divided by the fluid density) is much less than the square of the total circulation. 

1. Introduction 
The present article is concerned with an experimental investigation of a turbulent 

trailing vortex, and in particular one with superimposed coaxial jets or wakes. Such 
studies are not new, but, possibly because of the dangcr trailing vortices pose to other 
aircraft, the primary aim of much, though not all, experimental work to date has 
been to help in developing empirical methods to predict the evolution of the vortex, 
or in devising methods to rapidly dissipate its vorticity (see e.g. Poppleton 1 9 7 1 ~ ;  
Corsiglia & Dunham 1976; Smith 1980). The only detailed turbulence measurements 
would appear to  be those of Poppleton (1971b) and Singh (1974). 

Poppleton imposed jets of varying momentum on to a vortex generated by a 
differential aerofoil and measured all components of the Reynolds-stress tensor and 
velocity vector a t  three downstream stations. Singh was concerned with laminar 
instabilities in an isolated trailing vortex, and studied the vortex trailing from a 
highly loaded single aerofoil. He measured some components of the Reynolds stress 
tensor, in addition to the axial and tangential velocities, a t  four downstream stations. 

Knowledge of the turbulence field is useful not only in helping to acquire clear ideas 
about the vortex structure, but also in developing a general understanding of the 
behaviour of turbulent flows with significant mean-streamline curvature, and for 
turbulence modellers as a test case. Since Poppleton’s results contain much scatter 
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and Singh's are incomplete, the aim of the present work was to obtain such 
measurements with a view to providing more definitive data than has hitherto been 
available. 

Acquiring such measurements in a vortex trailing from a single aerofoil is not 
without its difficulties, however, since the vortex will move owing to the presence 
of a probe (Mason & Marchman 1972), and is prone to wander (Baker et al. 1974). 
A less sensitive vortex is that  which forms and trails from two identical aerofoils radial 
to an axis of symmetry and each inclined a t  the same angle of attack (as viewed from 
the axis of symmetry). Hoffmann & Joubert (1963) found such an arrangement 
produced ' a  stable single vortex. . .whose position in the tunnel remained almost 
completely independent of velocity, angle of attack and downstream distance ' ; and 
the insertion of a probe (Poppleton). In  consequence we generate our vortex with a 
similar arrangement. 

Five flows are studied: in two a jet is superimposed coaxially with the vortex; a 
further two have a coaxial wake, while the fifth approximates a turbulent line vortex. 
In  each we use linearized hot wires to measure the velocity vector and all components 
of the Reynolds-stress tensor at 45,78 and 109 chordlengths downstream of the wing. 
The free-stream velocity was low enough to consider the flow incompressible and 
yielded a Reynolds number, based upon wing chord, of about 7.4 x lo4. 

A preliminary report on this work, and some of the data (plus an empirical theory), 
was presented at a meeting of the International Council of the Aeronautical Sciences 
(Graham, Newman & Phillips 1974); while the complete set of data is given in Graham 
& Phillips (1975). 

2. Governing equations 
We use cylindrical coordinates (cr, 8, c z )  with z in the streamwise direction. The 

corresponding mean velocity components are (Ue,, UW,, Uv,). Then the mean 
momentum equations for steady axisymmetric flow are, without approximation, 

And the equation of mass conservation is given by 

Here the wing chord is c ,  the free-stream velocity U, the pressure ppu2, and Reynolds 
number R e  = Uc/v .  

With constant U, the integral relations for a fully rolled-up trailing vortex are, from 
( 2 )  and (4), provided that r 2 G + 0  as r+ 00, 

JOm {(r- r,,) v, + 27c re=} r dr = - 2 Rep1 r, z + const, (5 )  
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where r = 2nrv, and ro = limr+mr; and from ( 1 )  and (3), provided that r v x + O  as 
r- too,  

2 ~ ~ o ~ { v , ( v , - l ) - ~ ~ + ~ - ~ ( ~ + ~ ) ) r d r  = F. (6) 

The vortex is thus characterized by the sum of the axial mean momentum flux and 
the pressure thrust, termed the flow force i?pc2u2, and the circulation Po c U ;  but note 
that, while F and r,, are conserved, the fluxes of mean axial momentum and mean 
angular momentum are not (Morton 1969). For the case where the vortex is still in 
the process of rolling up, (5) and (6) take on a slightly different form, since the upper 
limit of integration must be interpreted as the radius to which successive turns of 
the vortex layer have merged, and this radius, ro and, indeed, F are functions of z. 
However, provided that the asymptotic roll-up process is well advanced, the 
variation in F is likely to be small, and possibly less than any error involved in 
measuring it. 

Now as the tangential velocity decays, an axial pressure gradient develops, and 
with it an axial component of flow (Batchelor 1964). Morton shows that the axial 
pressure gradient is important if F - and negligible if F > ri z R e ;  so to scale its 
importance we employ Long’s (1961) parameter F / r i .  Then the first condition 
suggests, in its limit, that F / T ;  = 1, and the latter that FIT; > z Re. In  the present 
study we restrict attention to trailing vortices for which F / r i  = 0(1), as it is these 
that are most likely to occur in free flight (see McCormick, Tangler & Sherrieb 1968; 
Verstynen & Dunham 1973). 

3. Experimental procedure 
3.1. General 

The experiments were performed in an open-return circular blower tunnel (described 
in detail by Vogel 1968) located in the air-conditioned Low-Speed Aerodynamics 
Laboratory at  McGill University. Dripac high-efficiency air filters a t  the tunnel 
entrance removed dust particles larger than 1 pm, and provided a resistance high 
enough to ensure that the flow in the 0.762 m diameter, 6.4 m long working section 
was little affected by conditions in the laboratory near the tunnel inlet. The walls 
of the working section were of porous-metal sheet and the distribution of porosity 
was arranged (by judicious blanking of the perforations with paper tape) to give an 
almost zero streamwise pressure gradient (within f 3 % of dynamic pressure over 5 m) 
along the tunnel axis with the vortex absent. Free-stream turbulencet vz was 
about 0.5 %. 

The vortex generator was mounted horizontally across the throat of the wind-tunnel 
contraction (see figure 1 )  and consisted of two identical wingst (see figure 2) set at equal 
(as viewed from the axis of symmetry) angles of incidence. The wings were designed 
(by Poppleton) to maintain constant circulation except at  the tips, where, over a 
radius of 5 em, a sinusoidal-like transition connected the positive circulation of each 
to zero at  the axis, thereby generating a region of high vorticity and a vortex sheet 
that rolled up into a double-branched spiral (see Pullin & Phillips 1981). To foster 
the development of turbulent boundary layers on the wings, and thereby suppress 
separation, a trip wire was placed ahead of each. The wings were linked by a nacelle 
enclosing a 9.5 mm internal-diameter pipe that supplied the jet (via a compressed 
air source) and supported the bluff body used to enhance the wake (see figure 2). 

t N.B. v z  = ($)+ (i = r,  8 ,~ ) .  
$ With chord e = 5.08 cm. 
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PIGIJRE 1. View of circular blower tunnel with upper portion removed to  expose: a, the wings 
(detailed in figure 2 ) ;  b, the traverse gear; and,  c,  the probe holder. 

The traverse gear moved on a horizontal streamlined bar set into the working 
section, and allowed horizontal and vertical movement over a large cross-sectional 
area. The probe holder, a long, narrow, slowly tapering device (see figure 1), 
positioned the hot wire some 570 mm upstream of t,he traverse gear and was designed 
to minimize interference; in effect, to increase the dynamic pressure a t  the probe by 
less than 1 yo. The probe could be rotated azimuthally; and this was done in 
increments of 45" by a servo motor. 

Accurate spatial location (to less than 0.1 mm) and initial orientation in azimuthal 
angle (to less than f 1") of the probe was straightforward, but precise alignment in 
the critically important pitch and yaw was not. This was achieved after careful 
geometrical orientation followed by fine adjustments based on the mean output of 
an inclined hot wire a t  a variety of azimuthal angles in streaming flow; when correctly 
aligned the output of the hot wire is independent of azimuthal angle. I n  practice, 
alignment was altered to  minimize the errors a t  four cross-stream locations. The final 
alignment was estimated to be accurate to within &? in pitch and yaw. 

Measurements were made a t  specified points, and a group of measurements in line 
either horizontally or vertically constituted a traverse ; traverses were generally 
performed at three downstream stations: z = 45, 78 and 109 a t  constant U.  
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1.9 cm 
c-l 

9 Flow 

FIGURE 2. The vortex generator, showing: c,  the trip wire ; d, the 0.952 cm jet pipe ; e, the jet outlet; 
and, f, the bluff body used in case E to enhance the wake (see $4.1) and which plugs into the jet 
outlet. 

3.2. Data acquisition 

DISA 55822 (normal) and 55825 (inclined) hot-wire probes connected with 5 pm 
tungsten wire were used throughout, and each was connected to a DISA model 55D01 
constant-temperature anemometer unit coupled to a 55D10 linearizer. After filtering 
frequencies above 20 kHz (with a DISA 55D25 filter), the linearized signal passed to 
a DISA type 55D35 r.m.s. meter. To ensure that the anemometers, linearizers, etc. 
remained in a state of thermal equilibrium, they were neither switched off nor moved 
throughout the series of experiments. 

Output from the linearizer-anemometer combination was calibrated against a 
range of velocities, as measured by Pitot and Pitot-static tubes. The Pitot tubes and 
the hot-wire probe were positioned 2.54 em apart in the wind tunnel, a t  a standard 
location well away from the wake of the vortex generator, which was set to zero 
incidence. The calibration constants pertaining to the hot wire were found to be 
repeatable and stable, and thus required only periodic checking. But a t  various times 
during a traverse the linearizer-anemometer output was checked against a standard 
velocity, that of streaming flow without a vortex, a t  the abovementioned calibration 
location. Dust filtering and almost-constant air temperature contributed significantly 
toward the stability of calibration. Inclined wires were calibrated in yaw and pitch 
in Smith's (1973) calibration drum; and the pitch angle was measured using a 
50 x Nikkor profile projector. 

The Pitot and Pitohstatic tubes were also used to calibrate a Statham pressure 
transducer; this monitored the tunnel speed by measuring the difference in static 
pressure between the throat of the tunnel contraction and the settling chamber. 
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3.3. Data reduction 

The outputs from the linearizer, r.m.s. meter and pressure transducer were linked, via 
high-quality triple-shielded cable, to a VIDAR integrating digital voltmeter interfaced 
to a GEPAC 4020 minicomputer. The VIDAR integrated readings over 16.6 m s  and 
then summed the result over 10 s. The summed readings were then stored by the 
computer, which simultaneously controlled the whole procedure. On completion of 
each experiment a further program retrieved the stored information and transformed 
it into the desired velocity and Reynolds-stress information. 

The equations required for this reduction follow from the analysis of Champagne 
& Sleicher (1967) (for the response of an inclined hot wire to three-dimensional flow), 
but taken to higher order and with corrections for blockage and yaw, in addition to 
the previously included pitch (see Phillips 1984). Such modifications were felt 
desirable in view of the scatter and low values of the cross-coupled terms reported 
by Poppleton. Corrections for blockage and yaw were found to be minor, but the 
higher-order corrections were not : indeed, the correction for the most offending shear 
stress vxvy includes two other shear stresses, two intensities and two velocity 
components, and could not be ignored. 

As input to these equations, we require, a t  each point, mean and fluctuating 
readings from an inclined wire at six azimuthal angles, q5 (viz q5 = O", 45", go", 135", 
180" and 270" measured from the horizontal), and similar readings from a normal wire 
at one azimuthal angle. The readings were obtained by making an entire traverse with 
a normal wire, followed by an identical traverse with an inclined wire. The results 
are referred to a rectangular Cartesian coordinate system (cx, cy, cz)  (see figure 1) with 
velocity components (Uw,, Uv,, Uv,); y is vertical, z is streamwise. 

and ;;;5" derive from the sum of two mean-squared readings (from an 
inclined wire) 180" apart, while derives from one mean-squared reading a t  q5 = 90" 
with a normal wire. The cross-correlations all derive from differences between two 
mean-squared readings : for vz v, and the readings are 180" apart, while for v, vy 
they are 90" apart. 

A t  each point nine pieces of information were derived from fourteen pieces of raw 
data;  the redundant data were used during the initial stages as a guide to eliminating 
computational and experimental errors. In  the final data-gathering process the most 
direct way of determining each parameter was chosen although, as a check, v, was 
always evaluated by independent methods. 

- 

The terms 

- 7 

3.4. The vortex axis 

We should like to view the measurements in terms of the cylindrical coordinates of 
$2, and the necessary transformation is 

But to utilize (7) we require the coordinates (relative to the traversing system) of the 
vortex axis, (x,,, yo) say. And although (xo, yo) may be deduced a posteriori from 
measurements of v, and w,, and then used in (7) ,  it  is better to locate the vortex axis 
from preliminary measurements, and traverse through i t ;  and we did so. 

The axis was found in two ways: first, by using a 1.6 mm diameter Pitot tube to 
locate the point of greatest total-head deficit ; secondly, by taking hot-wire traverses 
of v, and vuy near the axis and making use of (7 ) .  The respective methods yielded points 
less than 1.5 mm apart. 
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Mason & Marchman (1972) report that ' moving the probe in the[ir] vortex caused 
the vortex to move'. No such motion is apparent here. If there were, the Pitot tube 
and hot-wire probe, which were mounted 2.54 cm apart, would locate the vortex 
centre a t  markedly different points in space. 

Finding the vortex axis was considerably simplified when jets or wakes were 
imposed on the vortex, since exploratory measurements indicated that their axes were 
coincident and tha t  its position was very nearly constant from flow to flow. To find 
the axis of the flow, therefore, it  was sufficient to determine the centreline of the jet 
or wake by mapping v, with a normal hot wire. But, although great care was taken 
to locate the axis, it  is presumptuous to claim that i t  was always traversed; it is fair 
to say, however, that, for a traverse along y ,  y - yo  4 rl at x-xo  = 0, where crl is the 
radius at which the tangential mean velocity takes its peak value Uv,. Moreover, with 
an error of this magnitude, we see from (7) that only negligible corrections are 
required to all transformations except vr vg, so that i t  is reasonable simply to assume 
that the vortex axis was traversed. For v, vug, 

7 

7 - -  
vrve = {vxvy [ ( x - x ~ ) ~ - ( Y - Y ~ ) ~ I - ( ~ - ~ )  (x-xo)  ( ~ - y o ) >  [ ( X - X O ) ~ + ( Y - Y O ) ~ I - ~ ,  

so for y -yo  + 0 we have that 
for 0 < r < y - yo ; while for r + 

(8) 

r = y -yo  and that v,vg is undefined 
Thus close to the origin our v, Vg data 

r 

rn 

must be viewed with caution. 

3.5. Test flows 

The experimental and reduction procedures were tested by taking measurements in 
two well-documented flows ; fully developed turbulent flow in a circular pipe and the 
turbulent round jet discharging into still air. 

In  the pipe flow the measured shear-stress profile corresponds almost exactly to 
that calculated from the pressure drop, and the turbulence intensities are in accord 
with those measured by Guitton (1968) and Irwin (1972) in the same pipe. 

The physical configuration for the round jet was made as close as possible to that 
of Wygnanski & Fiedler (1969). Near the flow axis (where no high-turbulence-level 
corrections were necessary) our measured Reynolds-stress field was similar in form 
to theirs, but of lower apparent level. For example @ on the axis 75-100 outlet 
diameters downstream was 0.24 compared with their 0.28. This was due to the limited 
response of our r.m.s. meter below 0.5 Hz. In  the present work, however, this is not 
expected t? be important, since the lowest frequencies of interest are an order of 
magnitude higher than those in the round jet. 

4. Experimental results 
4.1. Cases studied 

Experimental flows consisted of trailing vortices coaxial with either an imposed jet 
or wake. The vortex generator was inclined a t  9" to the streaming flow, the velocity 
of which was 21.4 m/s; in all cases r, z 0.74. Traverses were made in the region 
-4  < x -xo  < 4 for all cases a t  z = 45, 78 and 109, yielding, for z / r o ,  the respective 
values 61, 105 and 147. The following cases were studied: 

Case A: a strong jet, with a stagnation pressure of 1.2 x lo2 kN/m2, in which the 
peak velocity increment a t  the first station ( z  = 45) was 26% of the free-stream 
velocity; F I T :  x 5. 
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FIGTJRE 3. Axial-velocity profiles: symbols for cases A, B, C, D, E :  0, z = 45; 
A, z = 78; 0, z = 109. For case AS: 0 ,  z = 45; 0,  z = 109. 

z = 45 

Case A b 

A 0.26 -0.33 
AS 0.29 -0.38 
B 0.075 -1.23 
1) -0.08 -2.29 
E -0.13 -0.89 

z = 78 

A b 

0.165 -0.20 
- - 
- - 

- - 
-0.115 -0.78 

TABLE 1 

z = 109 

A b 

0.125 -0.15 
0.135 - 0.164 
- - 
- - 

-0.09 -0.67 

Case AS: the same jet as in case A but with no vortex; F x 2.75. 
Case B: a significantly weaker jet (with a stagnation pressure of 0.22 x lo2 kN/m2) 

having similar half-width as the wake in case D. Here the peak velocity increment 
was 7.5% of U a t  z = 45 and FIT: x 0.22. 

Case C: a jet whose momentum flux was just sufficient to eliminate the momentum 
deficit of the unmodified wake (case D). Thus, after a certain period it produced a field 
of approximately uniform axial mean velocity, thereby approximating a line vortex : 

Case D:  the wake resulting from the vortex generator and nacelle assembly, for 
which the peak velocity decrementJ was 8 yo of U ;  F I T :  x -0.32. 

Case E: a wake enhanced by a 0.38 mm diameter cup-shaped bluff body, lips 
upstream, fixed to  the central nacelle (see figure 2). It was intended that this wake 
should have an axial-momentum decrement and half-width similar in magnitude to 
those of case A, but in practice this proved unattainable. The abovementioned cup 
gave a wake where IFITil was several times greater than in case D, though smaller 
than in case A, Here the peak velocity decrement was 13 yo of U a t  z = 45 and 

F I T :  x -0.12. 

FIT:  x -0.9. 

4.2. Axial mean-velocity profiles 

The axial mean-velocity profiles are given in figure 3. With the exception of case C, 
in which v, rz 1 ,  all are roughly Gaussian distributions, and for computational 
purposes are well described by v, = 1 + A  ebr2. Appropriate A -  and b-values are given 
in table 1 .  
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FIGURE 4. Tangential velocityprofilesfor cases A, B, C, D, E respectively: 0, a, 0, (>, 0, z = 45; 
A, A ,  A, A, A, z = 78; EI, 0 ,  d, 0 ,  El, z = 109. 

Case AS undergoes the greatest decay and radial spread, but quantified as the rate 
of change of the jet half-width r: with z ,  we find r t / ( z - z o )  x 0.014 (where zo is the 
virtual origin of the jet), a value much lower than that for a round jet into stagnant 
surroundings, which is typically 0.09 (Ribeiro & Whitelaw 1980). Growth of the same 
jet with a vortex (case A) is even slower (x 0.01), but such behaviour should not be 
interpreted as typical because, as is clear from (6), the development of the axial and 
tangential velocity fields are coupled. 

There is a slow but perceptible downstream change in vz for cases B and E, while 
cases C and D remain virtually constant. 

4.3. Tangential mean-velocity Jield 

The tangential mean-velocity profiles are given in figure 4. All are characterized by 
a central core of close to solid-body rotation surrounded by an annulus of high strain 
rate. Those flows with the greatest (F/I ' i( ,  whether caused by imposing a jet (case A) 
or a wake (case E) on the vortex experience the greatest diminution of the 
tangential velocity field, and thus v l ;  while cases B, C and D, for which JF/f :I 4 1 ,  
remain almost unchanged. Poppleton (1971a, 6 )  and Mason & Marchman (1972) 
report similar behaviour. Cases C and D have roughly equal, and the highest, values 

Comparison of horizontal (-4 < x-x0 < 4) and vertical ( -4 < y- yo < 4) 
traverses (for both cases A and D) a t  z = 45) indicated that the mean-velocity field 
was continuous and close to  axisymmetric, and showed that the innermost part of 
the double-branched spiral, formed by the rolling-up vortex layers, had merged 
(see Phillips 198 1 ) . 

On physical grounds we should expect the point of highest axial vorticity to be 
at the vortex axis, and this is so for all cases except A. Here, an inner core of close 
to solid-body rotation is surrounded by an annulus of greater angular velocity, which 
then merges into the highly sheared region where v1 occurs. At successive downstream 
stations, the region of solid-body rotation expands into the neighbouring annulus 
without itself being speeded up, and by z = 109 occupies the entire rotational region 

of vl. 
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FIQURE 5. Reynolds shear stress profiles for cases A and E. Symbols as in figure 3. F, profile 
calculated by difference from (3) at z = 78; G, as before, using (2). 

to rl. Moreover, at the first two stations the value of r i s ,  for r > rl, in excess of the 
ro value exhibited by the other flows. 

The necessity for overcirculation (i.e. r > To) in turbulent line vortices is clear 
from Saffman's Theorem (see Govindaraju & Saffman 1971), but the theorem 
requires large z ;  a condition not met here. This does not preclude overcirculation, 
however, because in a turbulent trailing vortex if z << Re then from (5)  

r m  
J ( r - rO)vzrdr  NN const, 

0 
(9) 

indicating that I' and v, are strongly coupled and that r > I'o is admissible over 
some r ; although inducing overcirculation in this way may be restricted to contrived 
situations such as case A, where the vortex is flooded by a rapidly decaying jet. 

4.4. Reynolds stresses 

The turbulence intensities and Reynolds shear stresses are given in figures 5-8;  the 
first two exhibit data for the extreme cases A and E, the latter two the intermediate 
cases B-D. 
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FIGURE 6. Turbulence intensities for cases A, AS and E. Symbols as in figure 3. 

r Looking first a t  figure 5 ,  we see that the v,v, profiles are typical of those for 
axisymmetric jets and wakes, being positive for the former and negative for the latter. 
Moreover, they agree well with the profiles calculated from (3), which are based upon 
the measured velocity field (see $4.5). It would appear that v,v, is slightly higher for 
case AS than for case A; this could be attributed to the axial pressure gradient present 
in case A and not in case AS. Note also that the stress levels of case E are almost 
an order of magnitude lower than in case A, in accord with the much lower decay 
rate of case E's axial velocity field. 

The shear stress p a  is of opposite sign to the v, v, component (although for case A 
i t  changes sign for some r > r l ) .  Such behaviour contrasts markedly with that for 
a swirling jet, in which a and a are of the same sign (see Pratte & Keffer 1972; 
Morse 1979). 

7 
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FIGURE 7. Turbulence intensities for cases B, C and D. Symbols as in figure 3. 

The profiles for a t  z = 78, calculated from (2), are in fair agreement with the 
data, which is noteworthy in view of the difficulties and corrections associated with 
measuring them. This stress is seen to decrease rapidly with z ,  particularly in case A, 
and, for most cases, to change sign at some r < rl. Singh's (1974) data for v, vo are 
positive for all r .  

Turning now to the turbulence intensities (figure 6), we note that axisymmetry 
requires v: = v; at r = 0 and that the measurements closely conform. Not sur- 
prisingly, the intensity levels are highest, and the decay most rapid, for cases A 
and AS. 

Now for a round jet into stagnant surroundings v,* > v: 2 v: over the radius of the 
jet (Wygnanski & Fiedler 1969); however, for our jet into streaming flow (case AS) 
we find vg 2 v: > v:, and, on adding the vortex (case A), v: 2 v; > v,* for some r < rl 
and v: > v: > v$ for r > rl. Such behaviour is also true for cases B-E. The situation 
where v: is greater than both v; and v,* is typical of flows in which turbulence 
production is significantly less than diffusion, such as in the central region of an 
axisymmetric wake. 

The turbulence intensities for cases B-D are given in figure 7 .  Again the axi- 
symmetry constraint a t  r = 0 is closely met ; however, away from the origin the B and 

m 
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C readings a t  z = 45 are not axisymmetric, although they become so by z = 78. 
Such behaviour is not uncommon in free turbulent shear flows, because Reynolds 
stresses take time to be generated and time to decay, so that local axisymmetry of 
the mean-velocity field need not imply local axisymmetry of the stresses (Townsend 
1976). 

The turbulence levels for cases B-D do not vary greatly from case to case, nor 
with z .  All peak in the region r < r l ,  possibly in consequence of the turbulent 
boundary layer on the nacelle surrounding the jet pipe (see figure 2 ) .  According to 
Rayleigh’s criterion the flow in this virtually solid-body region is highly stable, so 
that any turbulence there should rapidly decay. It doesn’t! This result is contrary 
to that of Barker & Crow (1977), who observed laminar annuli a t  the centres of their 
nominally two-dimensional vortex pairs. The reason for the discrepancy may well be 
due to the details of each flow: Barker & Crow took considerable care to minimize 
three-dimensional effects, so that Rayleigh’s criterion, which is strictly two- 
dimensional, should apply. Our flow is three-dimensional and columnar, where 
destabilization can occur in the presence of axial flow owing to azimuthal disturbances 
(Leibovich & Stewartson 1983); and we have both azimuthal disturbances and axial 
flow, even in case C. 

Measurement of Reynolds shear stress involves subtraction of two hot-wire signals, 
so that the likelihood of error increases when the signals, and their differences, are 
small. However, in spite of these terms being of the order of (see figure 8) some 
sensible profiles were obtained, particularly for case B, where each shear stress (with 
the exception of pvrve a t  z = 45, which is not symmetrical) apes its counterpart in 
case A. For cases C and D only vov, exhibits simple distinct profiles; and a 
appear erratic, although some downstream similarities are present, particularly for 
v,v,. Note that the curves depicted in figure 8 were sketched by eye; they have no 
theoretical basis. 

/7 

7 

7 

4.5. Momentum balance 
We have enough information to evaluate each term in the mean momentum equations 
(1)-(3) a t  z = 78, and do so for the two extreme cases A and E (see figures 9 and 10). 
By difference we find, from ( l ) ,  applar; from ( 2 ) ,  a ( r 2 a ) / r 2 a r ;  and, from (3) ,  
a ( r m / r  ar. The ensuing v, vg and v, v, profiles are plotted in figure 5. 

Now in the analysis of a trailing vortex one would normally apply an assumption 
of the boundary-layer type, i.e. a/az 4 a/ar, which requires v, 4 v,, a result supported 
by the present work; compare figures 3 and 11.  Equation ( l ) ,  which is used to evaluate 
+/az in (3), then becomes 

7 7 

72-72 3~ - v i  I ~g vr a 7  - 
ar r r ar ‘ 

The balance a p p r  = v i / r  would next be assumed on the basis that $ % (which 
is reasonable, see figure 6) and that a q / a r  may be neglected. But a e / a r  may not be 
neglected (figure 9), since the high turbulence intensities introduced by the jet fa11 
rapidly with increasing r and lead to a situation where vB/r and ?T/ar are numeric~ally 
almost equal over some r ,  thereby affecting ap/ar. 

Turning now to the @wise momentum equation (Z), we find that the term of most 
interest is a(r2v, v8)/r2 ar. Observe that although v, made only negligible contributions 
to ( l ) ,  i t  is clear from figures 9 and 10 that terms containing it in ( 2 )  cannot be iynorpd: 
doing so would affect the vortex decay rate. From an analyst’s point of vicu this 
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FIGURE 8. Reynolds shear stresses for cases B, C and D. Symbols as in figure 3. 

The ordinate for the extra symbol 0 at z = 45 is multiplied by ten. 

means that the inertia terms in (2) and (3) may not be linearized - unless 1F/rE1 4 1 ,  
as in cases B-D (see 95). 

The importance of 21, is further exemplified by the balance of terms in the 
axial-momentum equation (3). Here we find (for both cases A and E), that  
i3(rv, wZ)/ri3r x a ( r m ) / r a r  and that both contribute significantly to  (3),  while the 
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FIGURE 9. Momentum balance for case A. 

&equation r-equation z-equation 
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FIGURE 10. Momentum balance for case E. 

axial pressure gradient, induced by the decaying circumferential velocity, is relatively 
minor. But because ap/& is numerically much smaller than other terms in (3) does 
not mean it can be ignored, for, as Batchelor (1964) notes, it has a cumulative effect 
on the axial-velocity field over large z.  

5 .  Discussion 
It is well known that blowing a jet along the axis of a trailing vortex increases the 
radial dispersal of vorticity, presumably by increasing the level of turbulence. So if 
the turbulence level is increased by other means, creating a wake for example, we 
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z = 78 

I I I I I I I 
0 1 2 3 4 5 6 

r 

FIGURE 1 1 .  Radial-velocity profiles a t  z = 78 for cases A and E: as calculated from (4). 

might expect similar behaviour. The experiments bear this out, but they also indicate 
that imposing a wake is less effective in dissipating vorticity than imposing a jet. 

We see why from trajectories of sectional mean streamlinest in the plane normal 
to the vortex axis. Observe that for case E (figure 12) the trajectories spiral inward 
to a focus a t  the origin, indicating that the vortex is being longitudinally stretched 
(Perry, Lim & Chong 1980). The vorticity of each of the myriad vortex lines that 
compose the trailing vortex is thus increased, so that the effect of their radial dispersal 
by turbulence is then to some extent reduced. 

Imposing a jet, however, subjects the vortex to longitudinal compression, which 
diminishes the level of vorticity in each of the composite vortex lines and, coupled 
with their radial dispersal by turbulence, acts to enhance vortex decay. Thus the 
tangential velocity in case B (which is compressed and in which the turbulent 
intensities and velocity increments are roughly equal to the magnitude of case D’s) 
is seen by z = 109 to have decayed more than case D, whose state of decay (due to 
stretching) is not dissimilar to that of case C ,  which is unstretched. 

Sectional mean streamlines are concentric circles for an unstretched vortex (see 
case C,  figure 12), while for longitudinal compression they spiral out from the origin. 
The spiral is unbounded only if the vortex grows at the rate (vt):, however (see (5)), 
as faster growth necessitates stretching over some r > rl. Stretching increases the 
angular momentum there at the insistence of (5), following the depletion of angular 

t Streamlines based on the velocity field in the plane of the section Those for cases A and E 
at z = 7 8  were obtained by RungtLKutta integration using relevant velocities from figures 4 
and 11, but for schematic reasons the azimuthal ordinate in figure 12 has been reduced b j  
approximatelj 6 for case A and 60 for case E 
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Case A 

PIQURE 12. Sketches of sectional mean streamlines at z = 78 for cases A ,  C and E 
Note that the azimuthal ordinate is not to scale. 

momentum in the region r < r l .  We have this situation in case A (figure 12), where 
a limiting streamline is seen to separate the inward-spiralling outer streamline 
(stretching) from the outward-spiralling inner one (compression). Note that a similar 
trajectory pattern is to be expected during overcirculation, which may be induced 
by a growth rate in excess of (v t ) ; ;  and which, in view of the above discussion, would 
seem more likely in the presence of a jet rather than a wake. 

The details of the spiral depend to a large extent upon the radial velocity, which we 
should now like to discuss. ZI, is very much smaller than v, (compare figures 3 and 1 l ) ,  
and is usually ignored in the analysis of a trailing vortex whenever Iv,- 11 << 1. 
This does not mean that v, is zero (for we can evaluate i t  from (4) once av,/az is known 
from (3)) and that the mean sectional streamlines are circles, but that  its contribution 
to vortex growth is likely to be minor. The problem is then somewhat simplified, 
because the inertia terms in (2) and (3) are linear - at least to leading order - and 
the ensuing analysis tractable; see for example Moore & Saffman’s (1973) analysis 
of a laminar trailing vortex or Phillips’ (1981) analysis of a turbulent one. Uberoi 
(1977), however, asserts that such an approximation is invalid, and, as we have seen 
in $4.5 for cases A and E, it is. But are there situations when the assumption is valid, 
particularly for the vortices trailing from a Jumbo jet ? 

If the characteristic magnitudes of the variables in a slice of trailing vortex distant 
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Z from its virtual origin, and of radius R (suitably defined), are V,, V ,  and r,, for v,, v, 
and r respectively, then from (6) 

and by making use of (4) 

So that for a line vortex FIT:  - - 1/4.n and V, = 0. Now linear theory is valid 
provided that V, - 0, which requires FIT:  + 0(1/4.n), and cases B-D all satisfy 
FIT: + 0(1/4.n), as do the flight data of Verstynen & Dunham (1973) from a C5A 
Jumbo jet and, as near as can be ascertained, the data of McCormick et al. (1968) 
from Cherokee and Armyo-1 light aircraft. Once F I T  > O( 1 / 4 4 ,  however, the radial 
velocity may not be ignored and linear theory will no longer provide an adequate 
description of the vortex. Singh's (1974) data (for which F / r :  x 8), which Uberoi 
cites, and cases A and E are in this category, which may be of relevance to aircraft 
in the takeoff and landing phase if r,, < 1 .  
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